Loss of Free Fatty Acid Receptor 2 leads to impaired islet mass and beta cell survival

نویسندگان

  • Stephanie R. Villa
  • Medha Priyadarshini
  • Miles H. Fuller
  • Tanya Bhardwaj
  • Michael R. Brodsky
  • Anthony R. Angueira
  • Rockann E. Mosser
  • Bethany A. Carboneau
  • Sarah A. Tersey
  • Helena Mancebo
  • Annette Gilchrist
  • Raghavendra G. Mirmira
  • Maureen Gannon
  • Brian T. Layden
چکیده

The regulation of pancreatic β cell mass is a critical factor to help maintain normoglycemia during insulin resistance. Nutrient-sensing G protein-coupled receptors (GPCR) contribute to aspects of β cell function, including regulation of β cell mass. Nutrients such as free fatty acids (FFAs) contribute to precise regulation of β cell mass by signaling through cognate GPCRs, and considerable evidence suggests that circulating FFAs promote β cell expansion by direct and indirect mechanisms. Free Fatty Acid Receptor 2 (FFA2) is a β cell-expressed GPCR that is activated by short chain fatty acids, particularly acetate. Recent studies of FFA2 suggest that it may act as a regulator of β cell function. Here, we set out to explore what role FFA2 may play in regulation of β cell mass. Interestingly, Ffar2(-/-) mice exhibit diminished β cell mass at birth and throughout adulthood, and increased β cell death at adolescent time points, suggesting a role for FFA2 in establishment and maintenance of β cell mass. Additionally, activation of FFA2 with Gαq/11-biased agonists substantially increased β cell proliferation in in vitro and ex vivo proliferation assays. Collectively, these data suggest that FFA2 may be a novel therapeutic target to stimulate β cell growth and proliferation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Islet Brain 1 Protects Insulin Producing Cells against Lipotoxicity

Chronic intake of saturated free fatty acids is associated with diabetes and may contribute to the impairment of functional beta cell mass. Mitogen activated protein kinase 8 interacting protein 1 also called islet brain 1 (IB1) is a candidate gene for diabetes that is required for beta cell survival and glucose-induced insulin secretion (GSIS). In this study we investigated whether IB1 express...

متن کامل

A GIP Receptor Agonist Exhibits β-Cell Anti-Apoptotic Actions in Rat Models of Diabetes Resulting in Improved β-Cell Function and Glycemic Control

AIMS The gastrointestinal hormone GIP promotes pancreatic islet function and exerts pro-survival actions on cultured beta-cells. However, GIP also promotes lipogenesis, thus potentially restricting its therapeutic use. The current studies evaluated the effects of a truncated GIP analog, D-Ala(2)-GIP(1-30) (D-GIP(1-30)), on glucose homeostasis and beta-cell mass in rat models of diabetes. MATE...

متن کامل

Dysregulation of Dicer1 in Beta Cells Impairs Islet Architecture and Glucose Metabolism

microRNAs (miRNAs) play important roles in pancreas development and in regulation of insulin expression in the adult. Here we show that loss of miRNAs activity in beta-cells during embryonic development results in lower beta-cell mass and in impaired glucose tolerance. Dicer1-null cells initially constitute a significant portion of the total beta-cell population. However, during postnatal devel...

متن کامل

Overexpression of Kinase-Negative Protein Kinase Cδ in Pancreatic β-Cells Protects Mice From Diet-Induced Glucose Intolerance and β-Cell Dysfunction

OBJECTIVE In vitro models suggest that free fatty acid-induced apoptotic beta-cell death is mediated through protein kinase C (PKC)delta. To examine the role of PKCdelta signaling in vivo, transgenic mice overexpressing a kinase-negative PKCdelta (PKCdeltaKN) selectively in beta-cells were generated and analyzed for glucose homeostasis and beta-cell survival. RESEARCH DESIGN AND METHODS Mice ...

متن کامل

New Perspectives on the Role of Hyperglycemia, Free Fatty Acid and Oxidative Stress in B-Cell Apoptosis

Apoptosis is a complex network of biochemical and molecular pathway with fine regulatory mechanisms that control the death event during several pathological situations in multi cellular organisms. It is the part of normal development that occurs in a variety of diseases and is known as aberrant apoptosis. Pancreatic β cell apoptosis is also a pathological feature which is common in both type 1 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016